Preparation of ylides containing the bis(perfluoroalkanesulphonyl)methylene functionality

Shi-Zheng Zhu* and Ai-Wen Li

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, 200032 (China)

(Received December 30, 1991)

Abstract

Various ylides containing the bis(perfluoroalkanesulphonyl)methylene functionality, $Y^+-^-C(SO_2R_t)_2$ ($Y=C_5H_5N$, Ph_3P , SMe_2) have been synthesized by the reaction of phenyliodonium bis(perfluoroalkanesulphonyl)methide with pyridine, triphenylphosphine and dimethyl sulphide in good yield.

During the study of the photoreaction of phenyliodonium bis-(perfluoroalkanesulphonyl)methide, $PhI^+ - C(SO_2R_f)_2(1)$, as a bis(perfluoroalkanesulphonyl) carbene precursor [1], it was interesting to find that the carbene intermediate $(R_fSO_2)_2C$: reacted readily with uncharged but polarizable nucleophiles. For example, irradiation of 1 with dimethyl sulphide gave dimethylsulphonium bis(perfluoroalkanesulphonyl)methide $Me_2S^+ - C(SO_2R_f)_2$. We have reported the occurrence of an insertion reaction in the photolysis of 1 with benzene or toluene [1]; however, after treatment of 1 in pyridine, no insertion products could be detected but, instead, pyridinium ylide and iodobenzene were obtained. Recently, two similar results have been reported by Neiland [2] and Varvoglis and Hadjiarapoglou [3]:

 $PhI^+ - CZ_2 + C_5H_5N \longrightarrow C_5H_5N^+ - CZ_2 + PhI$

 $(Z = PhCO and PhSO_2)$

Varvoglis and Hadjiarapoglou [3] also obtained the sulphonium ylide, i.e. $Me_2(O)S^+ - C(SO_2Ph)_2$. In our case, heating or irradiation of 1 in DMSO gave only a 1:1 adduct which could be considered as a donor-acceptor complex [4].

$$PhI^{+} - C(SO_{2}R_{f})_{2} \xrightarrow[h\nu \text{ or } \Delta]{DMSO} DMSO[PhI^{+} - C(SO_{2}R_{f})_{2}]$$

Triphenylphosphine reacted easily with 1 to afford the corresponding triphenylphosphonium ylide containing the bis(perfluoroalkanesulphonyl)-methide group:

^{*}Author to whom correspondence should be addressed.

PhI⁺ --CX¹X² + Y: $\xrightarrow{hv, 8 h}_{67-88\%}$ Y⁺--CX¹X² + PhI 1(a-c) 2(a'-c') 3(aa'-cb') 1 X¹ X² 2 Y: a CF₃SO₂ CF₃SO₂ a' C₅H₅N b C₄F₉SO₂ C₄F₉SO₂ b' SMe₂ c - SO₂(CF₂)₃SO₂ - c' PPh₃

The results obtained are summarized in Table 1.

All these new compounds are stable and could be stored at room temperature for several weeks without decomposition. Their structures are fully supported by spectral data and microanalyses.

In conclusion, some new ylides containing the bis(perfluroalkanesulphonyl)methylene functionality could be easily obtained by the transylidation reaction of phenyliodonium bis(perfluoroalkanesulphonyl)methides with triphenylphosphine, pyridine and dimethyl sulphide.

Experimental

Melting points were taken on a Thiele tube and are reported uncorrected. IR spectra were measured on a Shimadzu IR-440 spectrometer. NMR spectra were recorded on an EM-360 NMR spectrometer at 60 MHz. Chemical shifts were in ppm from external TMS for ¹H and from external TFA for ¹⁹F, positive for upfield shifts. MS spectra were taken on an MS-4021 spectrometer.

The general procedure to prepare ylide 3 was as follows. A mixture of 1 (2.5 mmol) and 2 (50 mmol) in a 25 ml quartz flask equipped with reflux condenser, dry tube and magnetic stirring bar, was irradiated by UV at room

Entry ^a	Reactants	Products	M.p. (°C)	Yield ^b (%)
1	1a+2a'	3aa'	116-118	78
2	1c + 2a'	Sca'	142 - 145	81
3	1a + 2b'	3ab'	148	88
4	1b + 2b'	3bb′	182	85
5	1c+2b'	3cb′	198	85
6°	1a + 2c'	3ac'	247-249	67

TADDE 1.	TABLE	E 1.
----------	-------	------

^aAll reactions were conducted by irradiation via a 400 W low-pressure Hg lamp at room temperature in a quartz flask.

^bIsolated yield based on reactant 1.

'In this reaction, CH₂Cl₂ was used as a solvent.

temperature for 8 h. After removing the excess 2 or solvent, the residue was left standing overnight. The precipitate was filtered off, and the crude product was recrystallized from CH_3CN and $(CH_3)_2CO$ (1:1) to afford pure 3.

Pyridinium bis(trifluoromethanesulphonyl)methide, $C_5H_5N^+ - C(SO_2 - CF_3)_2$ (**3aa**'): Analysis: Found: C, 27.20; H, 1.54; N, 4.14; F, 31.50%. Required for $C_8H_5F_6NO_4S_2$: C, 26.89; H, 1.40; N, 3.92; F, 31.93%. IR (KBr) (cm⁻¹): 3010 (vw); 1591 (w); 1440 (m); 1360 (s); 1328 (m); 1250 (m); 1200 (m); 1138 (vs); 987 (s); 918 (s); 879 (m); 738 (m); 698 (s); 600 (s); 550 (s). ¹H NMR (CD₃)₂CO δ : 7.66–7.90 (m, 3H); 8.13–8.40 (m, 2H) ppm. ¹⁹F NMR δ : 3.80 (s, 2×CF₃) ppm.

Dimethyl sulphonium bis(trifluoromethanesulphonyl)methide, $Me_2S^+ - C(SO_2CF_3)_2$ (**3ab**'): Analysis: Found: C, 17.64; H, 1.54; F, 34.03%. Required for $C_5H_6F_6O_4S_3$: C, 17.64; H, 1.76; F, 33.53%. ¹H NMR (CD_3)₂CO δ : 3.36 (s, 2CH₃) ppm. ¹⁹F NMR δ : 3.7 (s, 2×CF₃) ppm. IR (KBr) (cm⁻¹): 3000 (m); 2900 (w); 1422 (w); 1362 (vs); 1343 (s); 1320 (m); 1200 (vs); 1180 (vs); 1124 (s); 1105 (m); 1060 (m); 1020 (s); 983 (s); 950 (s); 680 (m); 648 (s); 602 (vs); 562 (m); 501 (m). MS *m/z* (% rel. abundance): 341 (M⁺H, 31.72); 340 (M⁺, 5.64); 331 (M⁺ - F, 1.57); 272 (M⁺H - CF₃, 77.74); 255 (M⁺ - CF₃ - O, 13.61); 239 (M⁺ - CF₃S, 7.27); 191 (Me₂S=C⁺SOCF₃, 5.15); 163 (M₂S⁺CF₃, 11.03); 145 (CF₃SC⁺=S, 15.54); 117 (CF₃SO⁺, 7.65); 69 (CF₃⁺, 31.80); 63 (⁺SOCH₃, 100); 62 (Me₂S⁺, 29.19); 59 (MeSC⁺, 45.23); 47 (MeS⁺, 17.39).

Dimethyl sulphonium bis(perfluorobutanesulphonyl)methide, $Me_2S^+ - C(SO_2C_4F_9)_2$ (**3bb**'): Analysis: Found: C, 20.61; H, 0.76; F, 53.21%. Required for $C_{11}H_6F_{18}O_4S_3$: C, 20.62; H, 0.93; F, 53.43%. ¹H NMR & 3.30 (s, 2CH₃) ppm. ¹⁹F NMR & 6.0 (s, 2CF₃); 34.8 (m, 2CF₂); 45.5 (m, 2CF₃); 50.6 (m, 2×SCF₃) ppm. IR (KBr) (cm⁻¹): 3000 (w); 2980 (w); 1422 (w); 1380 (vs); 1350 (m); 1282 (m); 1261 (m); 1230 (s); 1200 (vs); 1150 (s); 1130 (s); 1110 (m); 1038 (s); 982 (m); 951 (m); 800 (m); 738 (m); 640 (m); 612 (m); 582 (s); 530 (m); 502 (m). MS (% rel. abundance): 641 (M⁺H, 1.45); 640 (M⁺, 1.85); 557 (M⁺ - C₄F₉SO₂ - O, 1.07); 219 (C₄F₉⁺, 10.36); 122 (SOC⁺ = SMe₂, 3.44); 69 (CF₃⁺, 15.53); 62 (Me₂S⁺, 99.90); 47 MeS⁺, 5.87).

Dimethyl sulphonium 1,1,3,3-tetraoxo-1,3-dithioperfluorocyclohexyl ylide, $Me_2S^+ - \overline{CSO_2(CF_2)_3}SO_2$ (**3cb**'): Analysis: Found: C, 20.70; H, 1.21; F, 32.45%. Required for $C_6H_6F_6O_4S_3$: C, 20.46; H, 1.70; F, 32.28%. ¹H NMR δ : 3.35 (s, 2CH₃) ppm. ¹⁹F NMR δ : 42.5 (m, 2CF₂); 50.0 (m, CF₂) ppm. IR (KBr) (cm⁻¹): 3000 (w); 2982 (w); 1428 (m); 1378 (vs); 1358 (m); 1340 (m); 1280 (m); 1260 (m); 1218 (s); 1160 (vs); 1060 (m); 1023 (s); 978 (s); 957 (s); 900 (m); 705 (s); 653 (m); 620 (m); 565 (m); 550 (s).

Pyridinium 1,1,3,3-tetraoxo-1,3-dithioperfluorocyclohexylylide, $C_5H_5N^+ - CSO_2(CF_2)_3SO_2$ (**3ca**'): Analysis: Found: C, 29.70; H, 1.32; F, 31.50%. Required for $C_9H_5F_6NO_4S_2$: C, 29.27; H, 1.36; F, 30.90%. ¹H NMR δ: 7.63–7.90 (m, 3H); 8.10–8.33 (m, 2H) ppm. ¹⁹F NMR δ: 42.3 (m, 2SCF₂); 49.8 (m, CF₂) ppm. IR (KBr) (cm⁻¹): 3002 (vw); 1592(w); 1442 (m); 1358 (s); 1330 (m); 1271 (m); 1242 (m); 1199 (m); 1140 (vs); 980 (s); 920 (s); 898 (m); 740 (m); 700 (m); 679 (s); 642 (m); 600 (s); 560 (s); 538 (s). MS m/z (% rel. abundance): 370 (M⁺H, 1.71); 369 (M⁺, 5.94); 353 (M⁺-O, 0.38); 337 (M⁺-2O, 0.51); 253 (M⁺-C₂F₄-O, 4.75); 240 (M⁺-CF₂-C₅H₅N, 1.08); 205 (M⁺-C₂F₄-SO₂, 45.76); 204 (M⁺H-C₃F₆-O, 51.99); 156 (M⁺H-C₃F₆-SO₂, 23.97); 100 (C₂F₄⁺, 18.09); 80 (SO₃⁺ or C₅H₅NH⁺, 78.96; 79 (C₅H₆N⁺, 57.13); 64 (SO₂⁺, 15.41); 52 (C₃H₂N⁺, 100).

Triphenylphosphonium bis(trifluoromethylsulphonyl)methide, $Ph_3P^+ - C(SO_2CF_3)_2$ (**3ac**): Analysis: Found: C, 46.81; H, 2.93%. Required for $C_{21}H_{15}F_6PO_4S_2$: C, 46.67; H, 2.78%. ¹H NMR δ : 7.63–8.10 (m, $3C_6H_5$) ppm. ¹⁹F NMR δ : (s, 2CF₃) ppm. IR (KBr) (cm⁻¹): 3040 (m); 1590 (m); 1481 (m); 1440 (m); 1340 (s); 1220 (m); 1180 (m); 1162 (s); 1118 (s); 1098 (s); 1000 (m); 962 (s); 742 (m); 721 (s); 698 (s); 600 (s); 540 (s); 500 (m). MS *m/z* (% rel. abundance): 541 (M⁺H, 1.95); 477 (M⁺ – SO₂, 2.96); 463 (M⁺ – C₆H₅, 3.33); 355 (M⁺ – P(C₆H₅)₂, 26.34); 279 (M⁺H – PPh₃, 100); 262 (⁺PPh_3, 14.10); 199 (CF₃SO₂⁺, 7.01); 108 (PhP⁺, 7.99); 77 (C₆H₅⁺, 35.15).

Acknowledgement

The authors wish to thank the Shanghai Natural Science and Technology Foundation for financial support.

References

- 1 S.-Z. Zhu and Q. Y. Chen, J. Chem. Soc., Chem. Commun., (1990) 1459.
- 2 O. Neiland, Zh. Org. Khim., 1 (1965) 1858.
- 3 A. Varvoglis and L. Hadjiarapoglou, Synthesis, (1988) 913.
- 4 S.-Z. Zhu, to be published.